Learning classifier systems with neural network representation
نویسنده
چکیده
منابع مشابه
Semi-Supervised Learning Based Prediction of Musculoskeletal Disorder Risk
This study explores a semi-supervised classification approach using random forest as a base classifier to classify the low-back disorders (LBDs) risk associated with the industrial jobs. Semi-supervised classification approach uses unlabeled data together with the small number of labelled data to create a better classifier. The results obtained by the proposed approach are compared with those o...
متن کاملRice Classification and Quality Detection Based on Sparse Coding Technique
Classification of various rice types and determination of its quality is a major issue in the scientific and commercial fields associated with modern agriculture. In recent years, various image processing techniques are used to identify different types of agricultural products. There are also various color and texture-based features in order to achieve the desired results in this area. In this ...
متن کاملA Brief Note on Discrete Dynamical Learning Classifier Systems
A number of representation schemes have been presented for use within Learning Classifier Systems, ranging from binary encodings to neural networks. This paper presents results from an initial investigation into using a discrete dynamical system representation within an accuracy-based Learning Classifier System. In particular, random Boolean networks are used to represent the traditional condit...
متن کاملAn Accuracy-based Neural Classifier System
Learning Classifier Systems have traditionally used a binary representation, with wildcards added to facilitate generalization. As they are applied to more complex domains the simple representation can become limiting. In this paper we present results from the use of a neural network-based representation scheme within the accuracy-based XCS. Here each rule’s condition and action are represented...
متن کاملA Novel Fuzzy and Artificial Neural Network Representation of Overcurrent Relay Characteristics
Accurate models of Overcurrent (OC) with inverse time relay characteristics play an important role for coordination of power system protection schemes. This paper proposes a new method for modeling OC relays curves. The model is based on fuzzy logic and artificial neural networks. The feed forward multilayer perceptron neural network is used to calculate operating times of OC relays for various...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006